Abstract

Earth systems increase in complexity, diversity, and interconnectedness with time, driven by tectonic/solar energy that keeps the systems far from equilibrium. The evolution of Earth systems is facilitated by three evolutionary mechanisms: elaboration, fractionation, and self-organization, that share universality features not found in more familiar equilibrium systems. These features include: 1. evolution to sensitive dependent critical states, 2. avalanches of changes following power law distributions with fractal organization, and 3. dynamic behaviour as strange attractors that often exhibit bistable behaviour. We propose a new approach to teaching Earth systems theory, where theoretical underpinnings of evolutionary mechanisms are introduced, followed by explorations of how the mechanisms interact to integrate the lithosphere, atmosphere, hydrosphere, and biosphere into a unitary evolutionary system. We incorporate conceptual and computer-based interactive models (included here as educational resources) within our lesson plans that illustrate a hierarchy of principles and experimental outcomes for evolutionary mechanisms. Application of this educational framework requires explicating complex systems mechanisms and their interactions, exploring their applicability to Earth systems, and imbedding them in high school as well as college introductory and upper level Earth Science classrooms to put all Earth systems on a comprehensive, integrated, universal evolutionary theoretical foundation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call