Abstract

Abstract Let $U$ be a horospherical subgroup of a noncompact simple Lie group $H$ and let $A$ be a maximal split torus in the normalizer of $U$. We define the expanding cone $A_U^+$ in $A$ with respect to $U$ and show that it can be explicitly calculated. We prove several dynamical results for translations of $U$-slices by elements of $A_U^+$ on a finite volume homogeneous space $G/\Gamma $ where $G$ is a Lie group containing $H$. More precisely, we prove quantitative nonescape of mass and equidistribution of a $U$-slice. If $H$ is a normal subgroup of $G$ and the $H$ action on $G/\Gamma $ has a spectral gap, we prove effective multiple equidistribution and pointwise equidistribution with an error rate. In this paper, we formulate the notion of the expanding cone and prove the dynamical results above in the more general setting where $H$ is a semisimple Lie group without compact factors. In the appendix, joint with Rene Rühr, we prove a multiple ergodic theorem with an error rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.