Abstract

AbstractSuper Soft Source (SSS) spectra are powered by nuclear burning on the surface of a white dwarf. The released energy causes a radiatively‐driven wind that leads to a radially extended atmosphere around the white dwarf. Significant blue shifts in photospheric absorption lines are found in the spectra of novae during their SSS phase, being an evidence of continued mass loss in this phase. We present spherically symmetric PHOENIX models that account for the expansion of the ejecta. A comparison to a plane parallel, hydrostatic atmosphere model demonstrates that the mass loss can have a significant impact on the model spectra. The dynamic model yields less pronounced absorption edges, and harder X‐ray spectra are the result. Therefore, lower effective temperatures are needed to explain the observed spectra. Although both types of models are yet to be fine‐tuned in order to accurately determine best fit parameters, the implications on the chemical abundances are going in opposite directions. With the expanding models the requirement for strong depletion of the crucial elements that cause these edges is now avoidable (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.