Abstract

This work aims to study the potential of expanded perlite (EP) for amoxicillin (AMX) removal in aqueous solution. For this purpose, chemical, morphological, and textural characteristics of the EP were evaluated, in addition to AMX removal by the adsorption process. The kinetic, isothermal, and thermodynamic parameters were also assessed. The EP presented an isoelectric point of 6.5 and a surface with hydroxyl bands, which favour the adsorption process. Air bubbles were sealed and randomly connected with each other, increasing the surface area relative to the adsorption sites. These non-porous or macro-porous sites demonstrate efficiency in the mechanisms of mass transfer. AMX removal was determined to be a pseudo-second-order process since the adsorption velocity was proportional to the square of the available adsorption sites and indicates heterogeneity in the surface interactions between the adsorbed molecules. Also, the interactions were considered multilayer for low concentrations and monolayer for high concentrations (Sips isotherm). The adsorption process was endothermic and utilised a physical adsorption mechanism. Considering that no modification treatment was applied to the EP, and due to its neutral isoelectric point, macropores, amorphous and dipole induction force (physical adsorption) characteristics, favourable affinity between EP and AMX was observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.