Abstract
Antibiotics can be effectively removed from wastewater using constructed wetlands (C.W.s). However, little is known about using attractive garden plants in C.W.s to eliminate antibiotics. Thus, the current study aims to treat amoxicillin (AMX)-contaminated wastewater through a Rhapis excelsa-based bioretention system (BS). The investigation was done at 15days hydraulic retention time (HRT) under two conditions: set-1, varied AMX 5 to 25ppm with constant NPK (nitrogen, phosphorus, potassium) source; and set-2, varied NPK sources with constant AMX (25ppm). During the study, it was observed that in the set-1 condition with increasing AMX concentration, the removal of AMX through BS decreased; however, in the set-2 experiment, with enhancing NPK source, the performance of the BS treating 25-ppm AMX-contaminated wastewater increased. AMX removal of 2.3%, 66.3%, 60.6%, 52.2%, 46.7%, and 44.9% was achieved for control, BS-1, BS-2, BS-3, BS-4, and BS-5, respectively, during set-1 experiment. However, in the set-2 experiment, 23.4% (control), 43.3% (BS-1), 60.3% (BS-2), 75.9% (BS-3), 88.8% (BS-4), and 99% (BS-5) AMX removal were achieved. Removing pollutants like AMX, COD, PO43--P, NO3--N, and NH4+-N followed first-order kinetics. A positive correlation of COD with AMX was observed through principal component analysis and correlation matrix. The microbial community study was also covered to prioritize the role of microbes in treating AMX through BSs. The AMX treatment through Rhapis excelsa-based BS supported plant growth and development with increasing chlorophyll content, fresh weight, and C, H, N value.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Environmental science and pollution research international
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.