Abstract

Although spinal cord injury (SCI) represents a primary etiology of disability, currently, there are exist limited viable therapies modalities. Acquiring comprehension of the diverse pathways that drive mitochondrial aberration may facilitate the identification of noteworthy targets for ameliorating the deleterious consequences precipitated by SCI. Our objective was to determine the efficiency of exosomes produced from Schwann cells (SCDEs) in protecting against mitochondrial dysfunction. This evaluation was conducted using a rat model of compressed SCI and in vitro experiments involving rat pheochromocytoma cells (PC12) exposed to oxygen-glucose deprivation (OGD). The conducted experiments yielded evidence that SCDEs effectively mitigated oxidative stress (OS) and inflammation subsequent to SCI, while concurrently diminishing necroptosis. Subsequent in vitro inquiry assessed the impact of SCDEs on PC12, with a specific emphasis on mitochondrial functionality, necrotic cell prevalence, and mitophagy. The study findings revealed that SCDEs enhanced mitophagy in PC12 cells, leading to a decrease in the generation of reactive oxygen species (ROS) and inflammatory cytokines (CK) provoked by OGD-induced injury. This, in turn, mitigated mitochondrial dysfunction and necroptosis. Mechanistically, SCDEs facilitated cellular mitophagy through activation of the AMPK signaling pathway. In conclusion, our data strongly support the notion that SCDEs hold considerable promise as a therapeutic approach for managing SCI. Furthermore, our investigation serves to elucidate the pivotal role of AMPK-mediated mitophagy in reducing cell damage, thereby unveiling novel prospects for enhancing neuro-pathological outcomes following SCI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.