Abstract

BackgroundPlatelet-rich plasma (PRP) provides a nonsurgical approach for treating osteoarthritis (OA). Exosomes that play vital roles in intercellular communication have been studied extensively. Here, we investigated the therapeutic potential and molecular mechanism of exosomes derived from PRP (PRP-Exos) in alleviating OA.MethodsExosomes derived from PRP(PRP-Exos) were isolated and purified using the exoEasy Maxi Kit and then identified and analyzed. Primary rabbit chondrocytes were isolated and treated with interleukin 1 beta (IL-1β) to establish the OA model in vitro. Proliferation, migration, and apoptosis assays were measured and compared between PRP-Exos and activated PRP (PRP-As) to evaluate the therapeutic effects on OA. The mechanism involving the Wnt/β-catenin signaling pathway was investigated by Western blot analysis. In vivo, we established animal knee OA model by surgery to compare the therapeutic effect of PRP-Exos and PRP-As.ResultsWe successfully isolated and purified exosomes from PRP using the exoEasy Maxi Kit. We also isolated and identified chondrocytes from the New Zealand white rabbit and established the IL-1β-induced OA model; meanwhile, PRP-Exos and PRP-As both inhibited the release of tumor necrosis factor-α(TNF-α) and there was no statistically significant difference between the two. In proliferation, migration, scratch assay, the promoting effect of PRP-Exos was significantly more better than PRP-As. Furthermore, PRP-Exos could significantly decreased apoptotic rate of OA chondrocyte compared with PRP-As. In Western blot analysis, the expression of β-catenin, and RUNX2, Wnt5a were increased in IL-1β-treated chondrocytes, but PRP-Exos and PRP-As could both reverse these changes, and the reversal effect of the former was better than the latter. In vivo, we found that both PRP-Exos and PRP-As displayed the progression of OA, and the effect of PRP-Exos was obviously better than PRP-As by chondrocyte count and Osteoarthritis Research Society International (OARSI) scoring system.ConclusionThe therapeutic effects of PRP-Exos on OA were similar or better compared with those of PRP-As in vitro or in vivo. PRP-Exos acting as carriers containing growth factors derived from PRP present a novel therapy for OA by activating the Wnt/β-catenin signaling pathway.

Highlights

  • Osteoarthritis (OA) is a significant health issue that is common among middle-aged and elderly populations worldwide and is associated with chronic pain, functional limitations, and economic burden [1, 2]

  • Characterization of platelet-rich plasma (PRP)-Exos Transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA) technology, and Western blotting (WB) were employed to comprehensively characterize the particles derived from PRP, called PRP-Exos

  • transmission electron microscope (TEM) clearly revealed that PRP-Exos exhibited a round-shaped morphology (Fig. 1a), and NTA showed that the majority of PRP-Exos had a similar size of 145.6 ± 50.4 nm (Fig. 1c)

Read more

Summary

Introduction

Osteoarthritis (OA) is a significant health issue that is common among middle-aged and elderly populations worldwide and is associated with chronic pain, functional limitations, and economic burden [1, 2]. A new approach to the treatment of OA, IA injection of platelet-rich plasma (PRP), plays a vital role in promoting chondrocyte proliferation, differentiation, and matrix synthesis [5, 6]. Exploring the molecular mechanism of PRP in treating OA brings great significance for us. It is believed that activated platelets secrete high amounts of growth factor (GF) and cytokines, the delivery of which contributes to the major functions of PRP, including promoting proliferation and inhibiting apoptosis of chondrocyte s[18,19,20]. Some studies have reported that exosomes derived from PRP may be the main mechanism by which PRP treats O A[13, 18]. Platelet-rich plasma (PRP) provides a nonsurgical approach for treating osteoarthritis (OA). We investigated the therapeutic potential and molecular mechanism of exosomes derived from PRP (PRP-Exos) in alleviating OA

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.