Abstract

Exosomal proteins from cancer cells are becoming new biomarkers for cancer monitoring and efficacy evaluation. However, their biological function and molecular mechanism underlying tumor metastasis are largely unknown. Bioinformatic methods such as bulk gene expression analysis, single-cell RNA sequencing data analysis, and gene set enrichment analysis were employed to identify metastasis-associated proteins. The in vitro and in vivo experiments were used to investigate the function of RAB13 in HCC metastasis. We identified RAB13 as one of the critical regulators of metastasis in HCC-derived exosomes for the first time. In vitro, the invasiveness of HCC cell lines could be attenuated by RAB13 silence. In vivo, tumor size and proportion of high-grade lung metastatic nodule could be reduced in the mice with orthotopic transplantation of tumors and intravenously injected with exosomes derived from MHCC97H cell with RAB13 silence (si-RAB13-Exo), as compared with those without RAB13 silence (si-NC-Exo). Moreover, in si-RAB13-Exo group, circulating tumor cell counts were decreased at the third, fourth, and fifth weeks after orthotopic transplantation of tumors, and MMP2 (matrix metalloproteinase 2)/TIMP2 (tissue inhibitor of metalloproteinases 2) ratio was also significantly decreased. In addition, RAB13 expression was also associated with VEGF levels, microvessel density, and tube formation of vascular endothelial cells by both in vitro and in vivo models, indicating that RAB13 was associated with angiogenesis in HCC. We have demonstrated exosomal RAB13 as a potential regulator of metastasis for HCC by in silico, in vitro, and in vivo methods, which greatly improve our understanding of the functional impact of exosomal proteins on HCC metastasis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.