Abstract

BackgroundThe growing consumer demand for foods that do not contain artificial additives and are “clean labeled” can be addressed in fermented products by using lactic acid bacteria (LAB) capable of synthesizing exopolysaccharides (EPS). There is great variability in LAB-based EPS in terms of quantity, monomer composition, molecular weight, charge, and structure, which results in an array of physicochemical and rheological properties that can be exploited for varied applications in the food industry. Scope and approachEPS are an alternative class of bio-thickeners widely used in the food industry. This review provides a brief overview of EPS composition and production, and highlights EPS functionality, focusing on specific areas and ways of applying them in food products. Key findings and conclusionsAlthough EPS-producing LAB strains have been traditionally applied in the manufacture of cultured milks, their use in the production process of low-fat cheeses, different plant-based yogurt alternatives, diverse types of sourdough breads, and reduced-fat fermented meat products are some of the novel applications of these polymers. EPS interact with other food components to improve the rheological and sensory properties of foods and, thus, they can act both as texturizers and stabilizers, increasing the viscosity and mouthfeel of products. Despite the abundance of research findings, a better understanding of the structure–function relationship of EPS in food products still remains a challenge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.