Abstract
The marine microalga Chroomonas sp. isolated from Venezuela was grown in semicontinuous culture in order to study the effect of renewal rate and nutrient concentration on alloxanthin, chlorophyll a, carotenoid, carbohydrate, exopolysaccharide, protein and cell productivity. Maximal cell productivity of 8.43 ± 1.8 and 8.81 ± 2.3 × 109 cell l−1 day−1 were achieved with renewal rates of 30 and 40%. Maximal protein and chlorophyll productivity of 64.64 ± 2.3 and 2.72 ± 0.3 mg l−1 day−1 were obtained with renewal rate of 20 and 30%. Biochemical composition of Chroomonas sp. was influenced by renewal rate. Nutrient concentration seems not to affect cell, protein, chlorophyll and carotenoid productivity. However, carbohydrate and exopolysaccharide productivity of 7.56 ± 0.4 and 9.57 ± 1.2 mg l−1 day−1 were increased at 12 mM NaNO3(P < 0.05). Also, alloxanthin and chlorophyll a production analysed by HPLC, were higher between 8 and 12 mM NaNO3 at a renewal rate of 30%. Results demonstrated that a renewal rate of 30% and nutrient concentration at 8 mM NaNO3 optimize the cell, protein, carbohydrate, chlorophyll a, and exopolysaccharide productivity in semicontinuous cultures of Chroomonas. This microalga, as biological source of commercially valuable compounds, shows high capacity for changing its productivity and biochemical composition in semicontinuous system on the basis of nutrient concentration and the renewal rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.