Abstract
BackgroundSenescence-accelerated mice (SAM) are a series of mouse strains originally derived from unexpected crosses between AKR/J and unknown mice, from which phenotypically distinct senescence-prone (SAMP) and -resistant (SAMR) inbred strains were subsequently established. Although SAMP strains have been widely used for aging research focusing on their short life spans and various age-related phenotypes, such as immune dysfunction, osteoporosis, and brain atrophy, the responsible gene mutations have not yet been fully elucidated.ResultsTo identify mutations specific to SAMP strains, we performed whole exome sequencing of 6 SAMP and 3 SAMR strains. This analysis revealed 32,019 to 38,925 single-nucleotide variants in the coding region of each SAM strain. We detected Ogg1 p.R304W and Mbd4 p.D129N deleterious mutations in all 6 of the SAMP strains but not in the SAMR or AKR/J strains. Moreover, we extracted 31 SAMP-specific novel deleterious mutations. In all SAMP strains except SAMP8, we detected a p.R473W missense mutation in the Ldb3 gene, which has been associated with myofibrillar myopathy. In 3 SAMP strains (SAMP3, SAMP10, and SAMP11), we identified a p.R167C missense mutation in the Prx gene, in which mutations causing hereditary motor and sensory neuropathy (Dejerine-Sottas syndrome) have been identified. In SAMP6 we detected a p.S540fs frame-shift mutation in the Il4ra gene, a mutation potentially causative of ulcerative colitis and osteoporosis.ConclusionsOur data indicate that different combinations of mutations in disease-causing genes may be responsible for the various phenotypes of SAMP strains.
Highlights
Senescence-accelerated mice (SAM) are a series of mouse strains originally derived from unexpected crosses between AKR/J and unknown mice, from which phenotypically distinct senescence-prone (SAMP) and -resistant (SAMR) inbred strains were subsequently established
Whole-exome sequencing revealed exonic profiles of SAM strains Whole-exome capture and next-generation sequencing were successfully performed on 11 mouse strains, i.e., SAMP1/SkuSlc, SAMP3/SlcIdr, SAMP6/TaSlc, SAMP8/ TaSlc, SAMP10/TaSlc, SAMP11/SlcIdr, SAMR1/SlcIdr, SAMR1/TaSlc, SAMR3B/SlcIdr, AKR/J, and C57BL/6J strains, and generated on average 73 million, single-end 50-bp reads per sample (Table 1)
The targeted regions included noncoding regions, we restricted our analysis to exonic single-nucleotide variations (SNVs) of 32,019 to 35,817 variants for SAMP strains, 36,174 to 38,925 for SAMR strains, 32,816 for AKR/J, and 1,407 for the C57BL/6J strain
Summary
Senescence-accelerated mice (SAM) are a series of mouse strains originally derived from unexpected crosses between AKR/J and unknown mice, from which phenotypically distinct senescence-prone (SAMP) and -resistant (SAMR) inbred strains were subsequently established. Senescence-accelerated mice (SAM) are a series of inbred strains developed from the AKR/J strain, consisting of 9 senescence-prone strains (SAMP) and 4 senescenceresistant strains (SAMR) [2,3]. It has remained unknown why SAM strains exhibit different phenotypes, even though they were derived from a common ancestor [2,3]. Xia et al performed genotyping for 581 microsatellite markers in 13 established SAM strains, and identified 4 loci that were different between the SAMP and SAMR strains [10], the responsible genes remain unknown. Genetic analysis of crosses between the SAMP1 and SAMR1 strains suggested that combinations of multiple gene mutations are responsible for the phenotypes [11]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.