Abstract
Intrahepatic cholestasis represents a heterogeneous group of disorders that begin during childhood, most commonly manifesting as neonatal cholestasis, and lead to ongoing liver dysfunction in children and adults. For children, inherited pathogenic factors of cholestasis have gained increasing attention owing to the rapid development of molecular biology technology. However, these methods have their advantages and disadvantages in terms of simplicity, sensitivity, specificity, time required and expense. In the present study, an effective, sensitive and economical method is recommended, termed high-resolution melting (HRM) analysis and direct sequencing, based on general polymerase chain reaction, to detect mutations in disease-causing genes. As one type of inherited intrahepatic cholestasis, progressive familial intrahepatic cholestasis type 2 (PFIC2) is caused by pathogenic mutations in the ABCB11 gene, HRM was used to detect mutations in the ABCB11 gene in the present study, and the diagnosis for PFIC2 was made by comprehensive analysis of genetic findings and clinical features. Furthermore, the characteristics of mutations and single nucleotide polymorphisms (SNPs) in the ABCB11 gene were elucidated. A total of 14 types of mutations/polymorphisms were identified in 20 patients from mainland China, including six missense mutations (p.Y337H, p.Y472C, p.R696W, p.Q931P, p.D1131V and p.H1198R), one nonsense mutation (p.R928X) and seven SNPs (p.D36D/rs3815675, p.F90F/rs4148777, p.Y269Y/rs2287616, p.I416I/rs183390670, p.V444A/rs2287622, p.A865V/rs118109635 and p.A1028A/rs497692). Five mutations were novel. The majority of the mutations were different from those detected in other population groups. A total of 4/20 patients (1/5) were diagnosed to be PFIC2 by combining genetic findings with the clinical features. Polymorphisms V444A and A1028A, with an allele frequency of 74.5 and 67.2%, respectively, were highly prevalent in the mainland Chinese subjects. No differences were found between the patients with cholestasis and the control subjects. Efficient genetic screening facilitates the clinical diagnosis of genetic disorders. The present study demonstrated that HRM analysis was efficient and effective in detecting mutations and expanded the known spectrum of ABCB11 gene mutations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.