Abstract
The current research was aimed to observe the interactive role of silicon-generated hydrogen sulfide (H2S) and nitric oxide (NO) on tolerance of pepper (Capsicum annum L.) plants to cadmium (Cd). Thus, the pepper plants were subjected to control (no Cd) or cadmium stress with and without Si supplementation. Significant decreases were found in plant dry weights, water potential, PSII maximum efficiency, glutathione (GSH), total chlorophyll, relative water content, Ca2+ and K+ concentrations and ascorbate, but there was a significant increase in H2O2, MDA, electron leakage (EL), proline, key antioxidant enzymes’ activities, and endogenous Cd, NO and H2S in the Cd-stressed plants. Silicon enhanced Cd tolerance of the pepper plants by lowering the leaf Cd concentration, oxidative stress, enhancing the antioxidant defence system, leaf Si content, photosynthetic traits and plant growth as well as the contents of NO, proline and H2S. Furthermore, foliar-applied NO scavenger, cPTIO, and that of H2S, hypotaurine (HT), significantly decreased the levels of H2S alone, but cPTIO effectively reduced the concentrations of NO and H2S accumulated by Si in the Cd-stressed plants. The positive effect of Si was eliminated by cPTIO, but not by HT, suggesting that both molecules were involved in Si-induced improvement in Cd tolerance of the pepper plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.