Abstract

Salinity adversely affects plants resulting in disruption to plant growth and physiology. Previously, it has been shown that these negative effects can be alleviated by various exogenous polyamines. However, the role of spermidine (Spd) in conferring salinity tolerance in sorghum is not well documented. The effect of exogenous Spd on the responses of sweet sorghum (Sorghum bicolor L.) seedlings to salt stress (150 mM NaCl) was investigated by measuring photosynthetic carbon assimilation, Calvin cycle enzyme activities, and the the expression of respective genes. Application of 0.25 mM Spd alleviated the negative effects of salt stress on efficiency of photosystem II and CO2 assimilation and increased the activities of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) and aldolase. Salt stress significantly lowered the transcriptions of genes encoding Rubisco large subunit, Rubisco small subunit, 3-phosphoglyceric acid kinase, glyceraldehyde-3-phosphate dehydrogenase, triose-3-phosphate isomerase, fructose-1,6-bisphosphate aldolase, fructose-1,6-bisphosphate phosphatase, and sedoheptulose-1,7-bisphosphatase. However, transcriptions of genes encoding phosphoribokinase and Rubisco were up-regulated. The Spd application enhanced expressions of most of these genes. It appears Spd conferred salinity tolerance to sweet sorghum seedlings by enhancing photosynthetic efficiency through regulation of gene expressions and activities of key CO2 assimilation enzymes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.