Abstract

Silicon is widely available in soil and is known to mitigate both biotic and abiotic stress in plants. Very low doses of silicon are becoming increasingly essential in rice for biofortification and preventing water loss. Soil salinity is a matter of grave concern in various parts of the world, and silicon is a suitable candidate to mitigate salinity-induced stress of important plants in affected areas. The present study investigates the protective capability of exogenously applied silicon in ameliorating NaCl-induced toxicity in two rice (Oryza sativa L.) cultivars, the salt-sensitive MTU 1010, and salt-tolerant Nonabokra. Rice seedlings were treated with three doses of NaCl (25, 50, and 100mM), initially alone and subsequently in combination with 2mM sodium silicate (Na2SiO3, 9H2O). After 21days, these plants were examined to determine levels of reduced glutathione, ascorbic acid, cysteine, and activities of different enzymes involved in the ascorbate-glutathione cycle, viz., glutathione reductase (GR), ascorbate peroxidase (APX), glutathione peroxidase (GPx), and glutathione S-transferase (GST). Though ROS levels increased in both the cultivars with increasing NaCl concentrations, cv. MTU 1010 accumulated comparatively higher amounts. A differential response of NaCl-induced toxicity on the two cultivars was observed with respect to the various enzymatic and non-enzymatic antioxidants. APX and GST activities, as well as, cysteine contents, increased concomitantly with salt concentrations, whereas GR activity declined at increasing salt concentrations, in both cultivars. Activity of GPx increased in cv. Nonabokra but declined in cv. MTU 1010, under similar NaCl concentrations. Reduced glutathione (GSH) contents decreased in both cultivars, whereas ascorbate contents declined in only the sensitive cultivar. Application of silicon, along with NaCl, in the test seedlings of both the cultivars, reduced ROS accumulation and boosted antioxidant defense mechanism, through enhancing ascorbate and GSH levels, and activities of ascorbate-glutathione cycle enzymes as well. However, amelioration of salt-induced damages in the sensitive cv. MTU 1010 was more pronounced upon silicon administration, than the tolerant cv. Nonabokra. Thus, cv. MTU 1010 was found to be more responsive to applied silicon. Hence, this study was instrumental in realizing a successful strategy in silicon-mediated amelioration of salinity stress in plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call