Abstract
MicroRNAs (miRNAs) are a class of small non‑coding RNAs involved in post‑transcriptional gene regulation. Furthermore, dysregulation of miRNA expression is an important factor in the pathogenesis of neuroblastoma. Our previous study identified that overexpression of monocyte chemoattractant protein‑induced protein1 protein led to a significant downregulation of a novel miRNA molecule, miRNA‑3613‑3p. In the present study, the potential involvement of miRNA‑3613‑3p in the cell biology of neuroblastoma was investigated. It was identified that the expression of miRNA‑3613‑3p varies among a range of human neuroblastoma cell lines. As the delineation of the functions of a miRNA requires the identification of its target genes, seven putative mRNAs that may be regulated by miRNA‑3613‑3p were selected. Furthermore, it was identified that overexpression of miRNA‑3613‑3p causes significant downregulation of several genes exhibiting tumor suppressive potential [encoding apoptotic protease‑activating factor1(APAF1), Dicer, DNA fragmentation factor subunitβ, vonHippel‑Lindau protein and neurofibromin1] in BE(2)‑C human neuroblastoma cells. APAF1 mRNA was the most significantly decreased transcript in the cells with miRNA‑3613‑3p overexpression. In accordance with the aforementioned results, the downregulation of cleaved caspase-9 and lack of activation of executive caspases in BE(2)‑C cells following miRNA‑3613‑3p overexpression was observed. The results of the present study suggest a potential underlying molecular mechanism of apoptosis inhibition via APAF1 downregulation in human neuroblastoma BE(2)‑C cells with miRNA‑3613‑3p overexpression.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have