Abstract

To investigate the roles of exogenous basic fibroblast growth factor (bFGF) on the repair of full-thickness articular cartilage defects in rabbits. In the present study, a double-layered collagen membrane sandwiched with bFGF-loaded-nanoparticles between a dense layer and a loose layerwas implanted into full-thickness articular cartilage defects in rabbits. By grafting the membrane in a different direction, the dense layer or the loose layer facing the surface of the subchondral bone, the effects of the released bFGF on the defects and the profiles of nine growth factors (GFs) in synovial fluid (SF) were investigated using histological methods and antibody arrays, respectively. In the group with the loose layer facing the surface of the subchondral bone, fast release of bFGF was observed, and early high levels of endogenous transforming growth factor-β2 (TGF-β2), vascular endothelial growth factor (VEGF), bFGF, bone morphogenetic protein 2 (BMP-2), BMP-3, and BMP-4 in SF were detected by antibody arrays, especially on day 3. Chondrocyte-like cells were also observed in this group at an early stage. As a result, this group showed better levels of repair, as compared to the other groups in which low GF levels were detected at an early stage, and chondrocyte-like cells appeared much later. Our study suggests that exogenous bFGF promotes articular cartilage repair by up-regulating the levels of multiple GFs, but administration at an early stage is required.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.