Abstract

Co-encapsulation of SDF-1/KGN within microsphere for synergistic cartilage repair. • Co-encapsulation of a chemokine & a chondroinductive molecule within individual microsphere. • Synergistic release profiles of SDF-1& KGN for efficient cartilage regeneration. • An injectable scaffold based cell free therapy for articular cartilage repair. This study was to co-encapsulate a chemokine (stromal cell-derived factor-1, SDF-1) and a chondroinductive molecule (kartogenin, KGN) within microspheres via microfluidics, and to incorporate them into a hyaluronic acid (HA) injectable scaffold for articular cartilage defect repair. HA injectable scaffold, as a cartilage-friendly microenvironment, was prepared by crosslinking HA with 1,4-butanediol diglycidyl ether. A microfluidic device was set up to prepare monodisperse PLGA microspheres (49 μm) to load SDF-1 and KGN. An in vivo model of full-thickness articular cartilage defects in rabbits was applied to evaluate the reparative capacity of the current package. The SDF-1 and KGN were co-encapsulated simultaneously within the core and shell area of the microsphere with high loading efficiency and sustained release profiles of more than 2 months. The release profiles of them were highly matched and well fitted to a first-order mathematical model. These microspheres when incorporated into HA injectable scaffold were demonstrated to heal the full-thickness articular cartilage defects in rabbits. The regenerated tissue had the typical cartilage histological characters and integrated well with the surrounding tissue at 12w. This developed cell-free system could serve as an efficient therapy for articular cartilage defects treatment, serving as a supplementary way to cell based therapies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.