Abstract

The exocyst complex subunit Sec5 is a downstream effector of RalA-GTPase which promotes RalA-exocyst interactions and exocyst assembly, serving to tether secretory granules to docking sites on the plasma membrane. We recently reported that RalA regulates biphasic insulin secretion in pancreatic islet β cells in part by tethering insulin secretory granules to Ca2+ channels to assist excitosome assembly. Here, we assessed β cell exocytosis by patch clamp membrane capacitance measurement and total internal reflection fluorescence microscopy to investigate the role of Sec5 in regulating insulin secretion. Sec5 is present in human and rodent islet β cells, localized to insulin granules. Sec5 protein depletion in rat INS-1 cells inhibited depolarization-induced release of primed insulin granules from both readily-releasable pool and mobilization from the reserve pool. This reduction in insulin exocytosis was attributed mainly to reduction in recruitment and exocytosis of newcomer insulin granules that undergo minimal docking time at the plasma membrane, but which encompassed a larger portion of biphasic glucose stimulated insulin secretion. Sec5 protein knockdown had little effect on predocked granules, unless vigorously stimulated by KCl depolarization. Taken together, newcomer insulin granules in β cells are more sensitive than predocked granules to Sec5 regulation.

Highlights

  • The delivery of secretory granules to spatially restricted areas of the plasma membrane is a multistage process requiring polarized transport, restricted tethering, docking, and fusion of granules to specific regions on the plasma membrane

  • The exocyst complex is an evolutionarily conserved multisubunit protein complex implicated in tethering secretory granules to the plasma membrane, which was originally identified in the budding yeast Saccharomyces cerevisiae, where the exocyst has been shown to be essential for exocytosis [2,3,4,5]

  • The pancreatic islet b cell is a unique secretory cell to test the exocytotic function of Sec5

Read more

Summary

Introduction

The delivery of secretory granules to spatially restricted areas of the plasma membrane is a multistage process requiring polarized transport, restricted tethering, docking, and fusion of granules to specific regions on the plasma membrane. Each of these steps requires a discrete set of proteins to achieve high specificity. The mammalian exocyst (called Sec6/8 complex), is an octameric protein complex (Sec, Sec, Sec, Sec, Sec, Sec, Exo and Exo84) that has been implicated in tethering secretory vesicles to specific regions on the plasma membrane [8,9]. Many small GTPase interact with the Sec6/8 complex, and GTPdependent exocytosis was described in secretory b cells [10,11] and pituitary gonadogrophs [12]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.