Abstract

Abstract Using an energy balance model with ice sheets, we examine the climate response of an Earth-like planet orbiting a G-dwarf star and experiencing large orbital and obliquity variations. We find that ice caps couple strongly to the orbital forcing, leading to extreme ice ages. In contrast with previous studies, we find that such exo-Milankovitch cycles tend to impair habitability by inducing snowball states within the habitable zone. The large amplitude changes in obliquity and eccentricity cause the ice edge, the lowest-latitude extent of the ice caps, to become unstable and grow to the equator. We apply an analytical theory of the ice edge latitude to show that obliquity is the primary driver of the instability. The thermal inertia of the ice sheets and the spectral energy distribution of the G-dwarf star increase the sensitivity of the model to triggering runaway glaciation. Finally, we apply a machine learning algorithm to demonstrate how this technique can be used to extend the power of climate models. This work illustrates the importance of orbital evolution for habitability in dynamically rich planetary systems. We emphasize that as potentially habitable planets are discovered around G dwarfs, we need to consider orbital dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.