Abstract
In this note we consider the Dirichlet problem Δu + f(x, u)=0 in Ω, u = 0 on ∂Ω here Ω is a bounded domain in ℝn(n≧3), with smooth boundary ∂Ω. We prove the existence of strong solutions to the previous problem, which are positive if f satisfies a suitable condition. As a consequence we find that the problem with , may have positive solutions even if g is not a lower-order perturbation of Next We examine the case .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.