Abstract

LetXbe a real locally uniformly convex reflexive Banach space with locally uniformly convex dual spaceX⁎. LetT:X⊇D(T)→2X⁎be a maximal monotone operator andC:X⊇D(C)→X⁎be bounded and continuous withD(T)⊆D(C). The paper provides new existence theorems concerning solvability of inclusion problems involving operators of the typeT+Cprovided thatCis compact orTis of compact resolvents under weak boundary condition. The Nagumo degree mapping and homotopy invariance results are employed. The paper presents existence results under the weakest coercivity condition onT+C. The operatorCis neither required to be defined everywhere nor required to be pseudomonotone type. The results are applied to prove existence of solution for nonlinear variational inequality problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.