Abstract
The concept of nonlinear split ordered variational inequality problems on partially ordered Banach spaces extends the concept of the linear split vector variational inequality problems on Banach spaces, while the latter is a natural extension of vector variational inequality problems on Banach spaces. In this article, we prove the solvability of some nonlinear split vector variational inequality problems by using fixed-point theorems on partially ordered Banach spaces. It is important to notice that in the results obtained in this article, the considered mappings are not required to have any type of continuity and they just satisfy some order-monotonic conditions. Consequently, both the solvability of linear split vector variational inequality problems and vector variational inequality problems will be immediately obtained from the solvability of nonlinear split vector variational inequality problems. We will apply these results to solving nonlinear split vector optimization problems. The underlying spaces of the considered variational inequality problems may just be vector spaces which do not have topological structures, the considered mappings are not required to satisfy any continuity conditions, which just satisfy some order-increasing conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.