Abstract

In the present work we explore the potential of models of the discrete nonlinear Schrödinger (DNLS) type to support spatially localized and temporally quasiperiodic solutions on top of a finite background. Such solutions are rigorously shown to exist in the vicinity of the anti-continuum, vanishing-coupling limit of the model. We then use numerical continuation to illustrate their persistence for finite coupling, as well as to explore their spectral stability. We obtain an intricate bifurcation diagram showing a progression of such solutions from simpler ones bearing single- and two-site excitations to more complex, multi-site ones with a direct connection of the branches of the self-focusing and self-defocusing nonlinear regime. We further probe the variation of the solutions obtained towards the limit of vanishing frequency for both signs of the nonlinearity. Our analysis is complemented by exploring the dynamics of the solutions via direct numerical simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call