Abstract

We consider an abstract first-order evolutionary inclusion in a reflexive Banach space. The inclusion contains the sum of L-pseudomonotone operator and a maximal monotone operator. We provide an existence theorem which is a generalization of former results known in the literature. Next, we apply our result to the case of nonlinear variational–hemivariational inequalities considered in the setting of an evolution triple of spaces. We specify the multivalued operators in the problem and obtain existence results for several classes of variational–hemivariational inequality problems. Finally, we illustrate our existence result and treat a class of quasilinear parabolic problems under nonmonotone and multivalued flux boundary conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.