Abstract
We are concerned with of existence of solutions to the semilinear elliptic problem $$ \begin{cases} - \Delta u=\lambda_{k}u+u^3 &\text{in } \Omega, \\ u= 0 &\text{on }\partial \Omega, \end{cases} $$% in a bounded domain $\Omega \subset \mathbb{R}^{4}$. Here $\lambda_k$ is an eigenvalue of the $-\Delta$ in $H_0^1(\Omega)$. We prove that this problem has a nontrivial solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.