Abstract
In a recent article, we achieved the well-posedness of linear hyperbolic initial and boundary value problems (IBVP) in a rectangle via semigroup method, and we found that there are only two elementary modes called hyperbolic and elliptic modes in the system. It seems that, there is only one set of boundary conditions for the hyperbolic mode, while there are infinitely many sets of boundary conditions for the elliptic mode, which can lead to well-posedness. In this article, we continue to consider linear hyperbolic IBVP in a rectangle in the constant coefficients case and we show that there are also infinitely many sets of boundary conditions for hyperbolic mode which will lead to the existence of a solution. We also have uniqueness in some special cases. The boundary conditions satisfy the reflection conditions introduced in Section 3, which turn out to be equivalent to the strictly dissipative conditions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have