Abstract

An afforested surface W := , N being the set of positive integers, is an open Riemann surface consisting of three ingredients: a hyperbolic Riemann surface P called a plantation, a sequence (Tn)n$\in$N of hyperbolic Riemann surfaces Tn each of which is called a tree, and a sequence (σn)n$\in$N of slits σn called the roots of Tn contained commonly in P and Tn which are mutually disjoint and not accumulating in P. Then the surface W is formed by foresting trees Tn on the plantation P at the roots for all n $\in$ N, or more precisely, by pasting surfaces Tn to P crosswise along slits σn for all n $\in$ N. Let ${\mathscr O}_s$ be the family of hyperbolic Riemann surfaces on which there are no nonzero singular harmonic functions. One might feel that any afforested surface W := belongs to the family ${\mathscr O}_s$ as far as its plantation P and all its trees Tn belong to ${\mathscr O}_s$. The aim of this paper is, contrary to this feeling, to maintain that this is not the case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.