Abstract
We characterize all the locally compact abelian (LCA) groups that contain quasicrystals (a class of model sets). Moreover, we describe all possible quasicrystals in the group constructing an appropriate lattice associated with the cut and project scheme that produces it. On the other hand, if an LCA group G admits a simple quasicrystal, we prove that recent results of Meyer and Matei for the case of the n-dimensional Euclidean space can be extended to G. More precisely, we prove that simple quasicrystals are universal sets of stable sampling and universal sets of stable interpolation in generalized Paley-Wiener spaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.