Abstract

This paper is concerned with the existence of positive solution to a class of singular fourth order elliptic equation of Kirchhoff type $$\begin{aligned} \triangle ^2 u-\lambda M(\Vert \nabla u\Vert ^2)\triangle u-\frac{\mu }{\vert x\vert ^4}u=\frac{h(x)}{u^\gamma }+k(x)u^\alpha , \end{aligned}$$ under Navier boundary conditions, \(u=\triangle u=0\). Here \(\varOmega \subset {\mathbf {R}}^N\), \(N\ge 1\) is a bounded \(C^4\)-domain, \(0\in \varOmega \), h(x) and k(x) are positive continuous functions, \(\gamma \in (0,1)\), \(\alpha \in (0,1)\) and \(M:{\mathbf {R}}^+\rightarrow {\mathbf {R}}^+\) is a continuous function. By using Galerkin method and sharp angle lemma, we will show that this problem has a positive solution for \(\lambda > \frac{\mu }{\mu ^*m_0}\) and \(0 0\) and h, k are Lipschitz functions, we show that this problem has a positive smooth solution. If \(h,k\in C^{2,\,\theta _0}(\overline{\varOmega })\) for some \(\theta _0\in (0,1)\), then this problem has a positive classical solution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call