Abstract
In this paper, we investigate the following Choquard equation \begin{document}$ \begin{equation*} -\Delta u = (I_\alpha*|u|^{f(x)})|u|^{f(x)-2}u {\rm in} \mathbb{R}^N, \end{equation*} $\end{document} where \begin{document}$ N\geq 3 $\end{document} , \begin{document}$ \alpha\in (0,N) $\end{document} and \begin{document}$ I_\alpha $\end{document} is the Riesz potential. If \begin{document}$ \begin{equation*} f(x) = \begin{cases} p, x'>where \begin{document}$ 1 and \begin{document}$ \Omega\subset\mathbb{R}^N $\end{document} is a bounded set with nonempty, we obtain the existence of positive ground state solutions by using the Nehari manifold.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have