Abstract

In this paper, we deal with the existence of nontrivial solutions for the following Kirchhoff-type equation $ M\left(\,\,\displaystyle{\iint_{\mathbb{R}^{2N}}\frac{|u(x)-u(y)|^{p}}{|x-y|^{N+sp}}\text{d}x\text{d}y}\right)(-\Delta)_{p}^{s} u+V(x)|u|^{p-2}u = \lambda f(x,u),\,\, \text{in}\,\,\mathbb{R}^N, $ where $0 0$ is a real parameter, $(-\Delta)_{p}^{s}$ is the fractional $p$-Laplacian operator, $V:\mathbb{R}^N\rightarrow\mathbb{R}^N$ is a potential function, $M$ is a Kirchhoff function, the nonlinearity $f:\mathbb{R}^N\times\mathbb{R}\rightarrow\mathbb{R}$ is a continuous function and just super-linear in a neighborhood of $u = 0$. By using an appropriate truncation argument and the mountain pass theorem, we prove the existence of nontrivial solutions for the above equation, provided that $\lambda$ is sufficiently large. Our results extend and improve the previous ones in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.