Abstract
In this paper, we study the global existence of steady subsonic Euler flows through infinitely long nozzles without the assumption of irrotationality. It is shown that when the variation of Bernoulli's function in the upstream is sufficiently small and mass flux is in a suitable regime with an upper critical value, then there exists a unique global subsonic solution in a suitable class for a general variable nozzle. One of the main difficulties for the general steady Euler flows is that the governing equations are a mixed elliptic-hyperbolic system even for uniformly subsonic flows. A key point in our theory is to use a stream function formulation for compressible Euler equations. By this formulation, Euler equations are equivalent to a quasilinear second order equation for a stream function so that the hyperbolicity of the particle path is already involved. The existence of a solution to the boundary value problem for stream function is obtained with the help of the estimate for an elliptic equation of t...
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have