Abstract

Surface-adsorbed CO is generally considered a reactive on-pathway intermediate in the aqueous electrochemical reduction of CO2 on Cu electrodes. Though CO can bind to a variety of adsorption sites (e.g., atop or bridge), spectroscopic studies of the Cu/electrolyte contact have mostly been concerned with atop-bound CO. Using surface-selective infrared (IR) spectroscopy, we have investigated the reactivities and coverages of atop- and bridge-bound CO on a polycrystalline Cu electrode in contact with alkaline electrolytes. We show here that (1) a fraction of atop-bound CO converts to bridge-bonded CO when the total CO coverage drops below the saturation coverage and (2) unlike atop-bound CO, bridge-bonded CO is an unreactive species that is not reduced at a potential of −1.75 V vs SHE. Our results suggest that bridge-bonded CO is not an on-pathway intermediate in CO reduction. Using density functional theory (DFT) calculations, we further reveal that the activation barrier for the hydrogenation of bridge-bon...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call