Abstract

<abstract><p>This paper consider that the following semilinear elliptic equation</p> <p><disp-formula> <label>0.1</label> <tex-math id="E0.1"> \begin{document}$ \begin{equation} \left\{ \begin{array}{ll} -\Delta u = u^{q(x)-1}, &\ \ {\mbox{in}}\ \ B_1,\\ u>0, &\ \ {\mbox{in}}\ \ B_1,\\ u = 0, &\ \ {\mbox{in}}\ \ \partial B_1, \end{array} \right. \end{equation} $\end{document} </tex-math></disp-formula></p> <p>where $ B_1 $ is the unit ball in $ \mathbb{R}^N(N\geq 3) $, $ q(x) = q(|x|) $ is a continuous radial function satifying $ 2\leq q(x) < 2^* = \frac{2N}{N-2} $ and $ q(0) > 2 $. Using variational methods and a priori estimate, the existence of a positive radial solution for (0.1) is obtained.</p></abstract>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.