Abstract

The paper considers the nonlinear system x ′ = f ( t , x , y ) , y ′ = g ( t , x , y ) x’ = f(t,x,y),y’ = g(t,x,y) with linear and nonlinear two point boundary conditions. With a Lipschitz condition, an interval of uniqueness for linear boundary conditions is determined using a comparison theorem. A corresponding existence theorem is established. Under the assumption of uniqueness, a general existence theorem is established for quite general nonlinearities in the functions and in the boundary conditions. Examples are provided. The results extend previous work on second order scalar differential equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.