Abstract
This paper is concerned with the existence and uniqueness of solutions for boundary value problems with p-Laplacian delay differential equations on the half-line. The existence of solutions is derived from the Schauder fixed point theorem, whereas the uniqueness of solution is established by the Banach contraction principle. As an application, an example is given to demonstrate the main results.MSC:34K10, 34B18, 34B40.
Highlights
Boundary value problems on infinite intervals have many applications in physical problems
Boundary value problems on infinite intervals involving second-order delay differential equations are of specific interest in these applications
Among the many articles dealing with boundary value problems of second-order delay differential equations, we refer the reader to [ ] and the references cited therein
Summary
Boundary value problems on infinite intervals have many applications in physical problems. Motivated by the work mentioned above, this paper aims to fill in the gap, and we shall tackle the existence and uniqueness of solutions to a boundary value problem of delay differential equation with p-Laplacian on infinite interval, which has been rarely discussed until now.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.