Abstract

We consider a macroscopic (averaged) model of transport and reaction in the porous subsurface. The model consists of PDEs for the concentrations of the mobile (dissolved) species and of ODEs for the immobile (mineral) species. For the reactions, we assume the kinetic mass action law. The constant activity of the mineral species leads to set-valued rate functions or complementarity conditions coupled to the PDEs and ODEs. In this paper we first prove the equivalence of several formulations in a weak sense. Then we prove the existence and the uniqueness of a global solution for a multispecies multireaction setting with the method of a priori estimates. In addition to mineral precipitation-dissolution reactions, the model also allows for aquatic reactions, i.e., reactions among the mobile species. In both the mineral precipitation-dissolution rates and the aquatic reaction rates we consider polynomial nonlinearities of arbitrarily high order.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.