Abstract
This paper is devoted to study the following Schrödinger-Poisson system where λ is a positive parameter, a ∈ C(R3,R+) has a bounded potential well Ω = a−1(0), b ∈ C(R3, R) is allowed to be sign-changing, K ∈ C(R3, R+) and f ∈ C(R, R). Without the monotonicity of f(t)=/|t|3 and the Ambrosetti-Rabinowitz type condition, we establish the existence and exponential decay of positive multi-bump solutions of the above system for , and obtain the concentration of a family of solutions as λ →+∞, where is determined by terms of a, b, K and f. Our results improve and generalize the ones obtained by C. O. Alves, M. B. Yang [3] and X. Zhang, S. W. Ma [38].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.