Abstract
The existence of global weak solutions to a parabolic energy-transport system in a bounded domain with no-flux boundary conditions is proved. The model can be derived in the diffusion limit from a kinetic equation with a linear collision operator involving a non-isothermal Maxwellian. The evolution of the local temperature is governed by a heat equation with a source term that depends on the energy of the distribution function. The limiting model consists of cross-diffusion equations with an entropy structure. The main difficulty is the nonstandard degeneracy, i.e., ellipticity is lost when the gas density or temperature vanishes. The existence proof is based on a priori estimates coming from the entropy inequality and the H^{-1} method and on techniques from mathematical fluid dynamics (renormalized formulation, div-curl lemma).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nonlinear Differential Equations and Applications NoDEA
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.