Abstract

A Maxwell–Stefan system for fluid mixtures with driving forces depending on Cahn–Hilliard-type chemical potentials is analyzed. The corresponding parabolic cross-diffusion equations contain fourth-order derivatives and are considered in a bounded domain with no-flux boundary conditions. The nonconvex part of the energy is assumed to have a bounded Hessian. The main difficulty of the analysis is the degeneracy of the diffusion matrix, which is overcome by proving the positive-definiteness of the matrix on a subspace and using the Bott–Duffin matrix inverse. The global existence of weak solutions and a weak–strong uniqueness property are shown by a careful combination of (relative) energy and entropy estimates, yielding H^2(\Omega) bounds for the densities, which cannot be obtained from the energy or entropy inequalities alone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.