Abstract

This work presents a novel integration system of the high-temperature gas-cooled reactor-pebble bed module project to a hydrogen production process using the iodine-sulfur cycle in cogeneration with seawater desalination. The current approach includes a Rankine cycle, a sulfur-iodine thermochemical cycle for hydrogen production and a multi-stage flash desalination process. The use of a catalyst that allows the H2SO4 decomposition reaction to being carried out at temperatures compatible with the nuclear reactor project is considered. The residual heat from the acid decomposition reactions is used to desalinate seawater through the multi-stage flash process. A chemical process simulator is used to create a computational model that allows estimates of global and local efficiencies of the proposed flow diagram. Some operating parameters were sized, and their influence on the efficiency is also reported. The proposed model for the sulfur-iodine cycle can produce 0.41 kg/s of hydrogen with partial energy and exergetic efficiency of 37.35% and 38.64%. The desalination process can process 40.70 kg/s with energy and exergy efficiencies of 58.78% and 82.66%, respectively. The higher exergy destruction share is obtained in the heat exchangers (36.55%), chemical reactors (16.56%) and separators (12.80%). The global system showed efficiencies of 40.13% and 52.04%, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call