Abstract

Abstract In this paper, exergy modeling is used to assess the exergetic performance of a novel trigeneration system using parabolic trough solar collectors (PTSC) and an organic Rankine cycle (ORC). Four cases are considered: electrical-power, cooling-cogeneration, heating-cogeneration, and trigeneration. In this trigeneration system a single-effect absorption chiller is utilized to provide the necessary cooling energy and a heat exchanger is utilized to provide the necessary heating energy. The trigeneration system considered is examined using three modes of operation. They are: solar mode during the low-solar radiation time of the day, solar and storage mode during the high-solar radiation time of the day, and storage mode during night time. The storage mode is operated through the heat collected in a thermal storage tank during the solar and storage mode. The exergy efficiencies and exergy destruction rates are examined under the variation of the ORC evaporator pinch point temperature, ORC pump inlet temperature, and turbine inlet pressure. This study reveals that the maximum electrical-exergy efficiency for the solar mode is 7%, for the solar and storage mode is 3.5%, and for the storage mode is 3%. Alternatively, when trigeneration is used, the exergy efficiency increases noticeably. The maximum trigeneration-exergy efficiency for the solar mode is 20%, for solar and storage mode is 8%, and for the storage mode is 7%. Moreover, this study shows that the main sources of exergy destruction rate are the solar collectors and ORC evaporators. Therefore, careful selection and design of these two components are essential to reduce the exergy destructed by them and, thus, increase the exergy efficiencies of the system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call