Abstract

An exergetic analysis model for direct methanol fuel cell (DMFC) is established in the present paper. Expressions of electrical, thermal and total exergetic efficiencies have been deduced with consideration of methanol crossover and over potential in operation. Furthermore, energy utilization of a DMFC system is quantitatively calculated and changes of electrical efficiency and thermal efficiency at various current density, methanol concentration, operating temperature, and cathode pressure have been investigated. Some suggestions of optimal operating conditions of direct methanol fuel cell based on our findings are put forward. Results show that the thermal energy generated in a DMFC takes up a significant amount of exergy in total energy and should be sufficiently used to obtain high total efficiency in a DMFC, high methanol crossover rate is the predominant cause of energy loss when the fuel cell operates at low current density, and total exergetic efficiency of a DMFC reaches its peak value at relatively high current density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.