Abstract

Lignocellulosic biomass is a potential renewable resource for production of high-value, sustainable products. Furfural is among the important bio-based chemicals in biorefineries. However, the conventional process of furfural production using a reaction-separation network entails low product yield but high fixed and operating costs owing to the complex process of separation. In this study, a process of furfural production via reactive distillation (RD) was investigated and designed based on the concept of process intensification. Exergy and exergoeconomic analyses were applied to evaluate the process performance. When the RD column was operated at its optimal configuration, furfural production of 81.78 kg h−1 was achieved with xylose conversion and furfural yield of 97.9% and 97.4%, respectively. The exergy efficiency of furfural production was 56.41%, while the RD column exhibited the maximum exergy destruction rate among all components with an exergy efficiency of 69.82%. The exergy destruction rate declined with decrease in the reboiler duty of the RD column and increase in xylose concentration. The exergoeconomic analysis revealed that decreasing the reboiler duty had the highest impact on the total cost of furfural production. Decreases in feedstock and catalyst costs as well as interest rate additionally lowered the total cost rate of the system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call