Abstract
This paper examines the performance and viability of a cement slag waste heat recovery system combined with a thermochemical copper-chlorine cycle for hydrogen production combined with hydrogen compression and a reheat Rankine cycle. The waste heat from the cement slag is recovered as a heat source for high-temperature reactions in the copper-chlorine cycle. The clean hydrogen production from waste heat recovery is examined with respect to both energy and exergy efficiencies. The integrated system is simulated and modeled in Aspen Plus. The multigeneration system utilizes the industrial waste heat and significantly reduces operating costs from the waste heat recovery. The overall energy efficiency of the integrated system is obtained as 32.5% while the corresponding exergy efficiency becomes 31.8%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.