Abstract

The exergy analysis of an electric vehicle heat pump air conditioning system (HPACS) with battery thermal management system was carried out by studying the exergy loss of each component. The results indicate that the compressor is the main source of system exergy loss in all operation conditions. The exergy loss distribution of HPACS is almost the same when the battery thermal management system integrated into the HPACS in cabin and battery mixed cooling mode and the system exergy loss was linearly related to the compressor speed in cooling modes. The performance of the HPACS is better than that of the positive temperature coefficient (PTC) heater in cabin heating mode. The degree of exergy efficiency improvement of the alternative mode was discussed at all operation conditions in cabin heating mode. The results indicate that the optimization effect using the electric vehicle HPACS to replace the PTC heater is obvious at lower compressor speed, surrounding temperature and internal condenser air flow rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.