Abstract

Nowadays, developing solar cooling technologies, especially ejector refrigeration system, has become preferable to scientific researchers. Exergy analysis is a technique in which the basis of evaluation of thermodynamic losses follows the second law rather than the first law of thermodynamics. An experimental exergy analysis of a solar-driven dual parallel-connected ejector (DPE) refrigeration system was conducted using water as working fluid. Saturated steam with 2 bar and 120oC was provided by heat–pipe evacuated tube solar collector with an assistant of an electric heater. The saturated stream was used as a motive flow for the ejectors. The exergy destruction and exergetic efficiency of the main components of the DPE refrigeration system were determined and compared with those when using a single ejector (SE) under same operating conditions. It was found that the most irreversibilities of both systems occurred at the solar collector, electric boiler and ejectors, respectively. Also, the total irreversibility (Exergy destruction) of the system when using DPE was lower than using a SE. In additions, the exergetic efficiency of the ejector, evaporator, and overall system when using DPE were increased by 21%, 10%, and 27%, respectively. The system thermal ratio (STR) and coefficient of performance (COP) of the system using DPE compared with SE were increased by 20% and 23%, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call