Abstract
To reduce fossil fuel consumption and its polluted environmental impact, a new enhanced waste heat recovery system operated by hot chimney flue gases from a cement plant is designed, analyzed, and evaluated. The configuration of the system is competitive and innovative. It is designed to be capable of producing space air cooling and electricity generation, simultaneously. Three temperature levels in the proposed cycle are considered, and a detailed mathematical model is developed with energy, exergy, and economic aspects are considered to achieve the best performance of the system. Computer FORTRAN subroutines are developed and run for simulation of several scenarios. A comprehensive parametric investigation and thermo-economic analysis are conducted and presented. It was found that the optimistic recovery system can achieve a refrigeration load coverage of 300 kW, while the energy and exergy efficiencies are 36.23% and 29.41%, respectively. The anticipated system seems to be optimistic knowing the cost of the product is estimated to be $45.97 per GJ.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have