Abstract

Hydrogen plays a crucial role in the transition to low-carbon energy systems, especially when integrated into energy storage applications. In this study, the concept of exergy-return on exergy-investment (ERoEI) is applied to investigate the exergetic efficiency (defined as the ratio of useful exergy output to invested exergy input) and CO2 equivalent intensity of the hydrogen supply chain, with a specific focus on the underground hydrogen storage process. Our findings reveal that the overall exergetic efficiency of the electricity-to-hydrogen-to-electricity conversion process can reach up to 25 %. Among the hydrogen production methods, green hydrogen, produced via electrolysis powered by renewable energy, exhibits the lowest CO2 equivalent intensity. Blue hydrogen, produced from natural gas with carbon capture, can significantly reduce the carbon footprint of electricity generation, though this advantage comes at the expense of decreased exergetic efficiency. Analysis further indicates that the exergetic efficiency of underground storage components ranges from 72 % to 92 %. A substantial fraction of the exergy is lost during compression and injection of the stored hydrogen. Nevertheless, the subsurface operations contribute a minimal CO2 emission, between 1.46–4.56 grams of equivalent CO2 per megajoule (gr-CO2eq/MJ) when powered by low-carbon energy sources. Furthermore, it is found that hydrogen loss in the reservoir, along with methane and hydrogen leak during surface operations, notably affects the overall efficiency of the storage process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.